

Assessment and modelling of Soil Carbon profiles in the Hughes Creek Catchment

Hughes Creek Catchment Collaborative - Landcare group

Science Partners

- Dr Cassandra Schefe CPSS Soil Scientist / Co-owner AgriSci Pty Ltd
- David Hawkey Agronomist / Co-owner AgriSci Pty Ltd

A brief introduction to the Hughes Creek Catchment

The Tablelands around Ruffy

Image Source: https://www.agric.wa.gov.au/soil-acidity/effects-soil-acidity

Topsoil acidity and Aluminium toxicity effects on Sub Clover nodulation and biomass

OFFICIAL

How pH affects Aluminium saturation levels

- Lawson Farm / Bluetops: Study paddock not very productive: abandoned, then used for hay since 1983. New pasture sown in 2019: perennial ryegrasses, cocksfoot, and annual legumes of Balansa clover and Antas sub clover. <u>Soil test (2021)</u> show low P, K and S; high acidity (4.3 to 5.2 in CaCl₂) and high aluminium (saturation 11%).
- Tarcombe: Well-established, deep-rooted perennial pasture, with Australian Phalaris and sub clover (variety unknown). Rock phosphate was
 major fertiliser input; set stocking as grazing method (cattle and sheep), now looking at rotational grazing for better outcomes. <u>Soil test</u>:
 Phosphorus, potassium and sulphur levels are low, likely to be some of the key limiters to pasture growth in this paddock.
- Looking Glass: degraded pasture dominated by low value annual grasses (annual winter grasses and broadleaf weeds), but with a good sub clover base. Assess pasture improvement methods over a 3-year period.

LAWSON FARM

Addition of soil amendments \rightarrow improve soil pH and nutrition \rightarrow soil carbon increase?

Hybrid fertilizer containing **20% carbon (**poultry litter, manure, sulphate of potash and rock phosphate (N 2.025%, P 4.4%, K 9.01%, S 3.81%, Carbon 22.25%)).

Lawson trial site Baseline Soil Test + Soil Health (2021)

					[рН (С	aCl2)								CEC	A	lumini	um Satu	iratio
						Ļ									¥		Ļ		
	В	С	D	E	F	G	Н	T	J	К	L	М	N	0	Р	Q	R	S	Т
1	Sample Name	Sampling Date	Sample Depth From	Sample Depth To	Test Code	pH (1:5 CaCl2)	Electrical Conductivity (1:5 water)	Available Potassium	Calcium (Amm- acet.)	Potassium (Amm- acet.)	Magnesium (Amm- acet.)	Sodium (Amm-	Ca/Mg Ratio	Aluminium (KCl)	Cation Exch. Cap.	Sodium % of Cations (ESP	Aluminium Saturation	Aluminium (KCl)	Calcium (Amm-ac
2		18		s a	3		dS/m	mg/kg	cmol(+)/kg	cmol(+)/kg	cmol(+)/kg	cmol(+)/kg	stat	cmol(+)/kg	cmol(+)/kg	%	%	mg/kg	%
3	Plot 1	08/11/2021	0	5	2018-124 Se	5.0	0.05	160	4.0	0.41	0.7	0.09	5.5	0.1	5.3	1.70	2.3	11.0	75.0
4	Plot 1	08/11/2021	5	10	2018-124 5	4.5	0.03	55	2.2	0.14	0.3	0.06	6.9	0.7	3.4	1.80	20.0	60.0	65.0
5	Plot 2	08/11/2021	0	5	2018-124 5	5.0	0.05	150	3.9	0.38	0.8	0.04	4.9	0.1	52	0.73	2.1	9.9	74.0
6	Plot 2	08/11/2021	5	10	2018-124 5	4.5	0.03	56	1.5	0.14	0.5	0.06	3.1	0.8	3.0	1.90	26.0	70.0	51.0
7	Plot 3	08/11/2021	0	5	2018-124 50	4.7	0.05	64	3.9	0.16	0.7	0.08	5.5	0.2	31	1.50	4.2	19.0	77.0
8	Plot 3	08/11/2021	5	10	2018-124 50	4.4	0.04	45	2.3	0.11	0.4	0.05	6.6	0.8	3.6	1.40	22.8	72.0	64.0
9	Plot 4	08/11/2021	0	5	2018-124 5	4.8	0.04	140	3.2	0.36	0.5	0.04	6.7	0.2	4.2	0.89	3.6	14.0	75.0
10	Plot 4	08/11/2021	5	10	2018-124 5	4.2	0.03	52	1.1	0.13	0.2	0.03	6.9	1.0	25	1.20	42.0	94.0	45.0
11	Plot 5	08/11/2021	0	5	2018-124 5	4.5	0.04	53	3.8	0.14	0.7	0.06	5.8	0.2	4.9	1.30	3.1	13.0	79.0
12	Plot 5	08/11/2021	5	10	2018-124 5	4.4	0.03	31	1.4	0.08	0.3	0.06	5.2	0.9	27	2.20	34.0	81.0	51.0
13	Plot 6	08/11/2021	0	5	2018-124 50	4.8	0.04	73	4.3	0.19	0.8	0.06	5.2	0.1	5.5	1.20	2.5	13.0	78.0
14	Plot 6	08/11/2021	5	10	2018-124 5	4.5	0.03	38	2.8	0.10	0.5	0.07	5.4	0.4	3.9	1.70	11.0	37.0	72.0
15	Plot 7	08/11/2021	0	5	2018-124 5	4.8	0.04	130	4.6	0.32	0.9	0.05	5.2	0.1	6.0	0.78	2.0	11.0	77.0
16	Plot 7	08/11/2021	5	10	2018-124 5	4.3	0.10	76	2.0	0.19	0.3	0.05	5.9	0.9	3.5	1.40	25.0	79.0	58.0
17	Plot 8	08/11/2021	0	5	2018-124 50	4.8	0.05	190	3.8	0.50	0.8	0.07	4.6	0.1	3.4	1.30	2.7	13.0	71.0
18	Plot 8	08/11/2021	5	10	2018-124 50	4.4	0.04	62	1.5	0.16	0.2	0.05	7.1	0.6	25	2.00	24.0	54.0	60.0
19	Plot 9	08/11/2021	0	5	2018-124 5	4.8	0.05	200	3.9	0.50	0.7	0.04	5.5	0.2	53	0.73	4.0	19.0	72.0
20	Plot 9	08/11/2021	5	10	2018-124 5	4.4	0.04	90	2.2	0.23	0.4	0.03	6.1	1.0	3.8	0.84	26.0	90.0	58.0
21	Plot 10	08/11/2021	0	5	2018-124 50	4.8	0.04	180	3.4	0.45	0.7	0.08	5.2	0.2	4.8	1.70	3.3	14.0	72.0
22	Plot 10	08/11/2021	5	10	2018-124 50	4.4	0.03	69	1.7	0.18	0.3	0.06	6.3	0.5	2.6	2.10	18.0	42.0	63.0
23	Plot 11	08/11/2021	0	5	2018-124 5	4.8	0.04	78	3.6	0.20	0.7	0.09	5.5	<0.1	4.5	2.00	<1.0	<9.0	79.0
24	Plot 11	08/11/2021	5	10	2018-124 5	4.4	0.03	37	1.3	0.09	0.2	0.08	6.8	1.0	23	2.80	38.0	92.0	49.0
25	Plot 12	08/11/2021	0	5	2018-124 5	5.2	0.05	62	4.8	0.16	0.7	0.06	7.2	<0.1	3.7	0.98	<1.0	<9.0	84.0
26	Plot 12	08/11/2021	5	10	2018-124 5	4.7	0.04	34	2.3	0.09	0.3	0.05	7.2	0.4	32	1.70	12.0	36.0	73.0
27																			

OFFICIAL

Lawsons trial site Baseline for soil carbon and pH (May 2021)

Site	Depth (cm)	% gravel	Bulk density (g/cm3)	Total SOC (% Oven Dry)	SOC (%) adj. for gravel	SOC (t/ha)	Total SOC per 30cm depth (t/ha)	pH (CaCl2)	CEC Meq/100g
Bluetops 1	0-10	3.05	1.31	3.39	3.29	43.04	68.51	4.3	3.5
	10-20	2.51	1.20	1.36	1.33	15.92		4.1	2.0
	20-30	2.35	1.20	0.81	<mark>0.80</mark>	9.55		4.3	1.8
Bluetops 2	0-10	2.74	1.12	3.58	3.48	39.06	69.58	4.7	4.9
	10-20	3.99	1.30	1.37	1.32	17.11		4.2	3.2
	20-30	3.17	1.21	1.14	<mark>1.11</mark>	13.41		4.5	3.1
Bluetops 3	0-10	8.12	1.18	3.79	3.48	41.08	70.56	4.6	5.1
	10-20	7.94	1.00	1.64	1.51	15.11		4.4	3.0
	20-30	8.29	1.36	1.15	<mark>1.06</mark>	14.37		4.5	2.5
Bluetops 4	0-10	9.06	1.23	3.09	2.81	34.56	53.39	4.5	4.4
	10-20	7.44	1.33	1.00	0.92	12.31		4.3	1.4
	20-30	7.58	1.49	0.47	<mark>0.44</mark>	6.52		4.4	1.5

Soil Health Solvita[®] CO2-Burst test for soil microbial respiration activity (40-140 mg/L)

Slaking and Dispersion; soil aggregation and structure

Active Carbon (Labile; > 4% is ideal)

Total Carbon, Total Nitrogen and C:N ratio for monitoring nitrogen mineralisation and immobilisation

CEC

LOOKING GLASS

Improving degraded pastures → increase long-term biomass production → soil carbon increase?

Name	Pasture Improvement	Lime
Treatment 1	Nil	Nil
Treatment 2	Nil	2.5t/ha
Treatment 3	Annual forage mix – Sown with Soilkee	Nil
Treatment 4	Annual forage mix – Sown with Soilkee	2.5t/ha
Treatment 5	Annual forage mix – Sown conventionally	Nil
Treatment 6	Annual forage mix – Sown conventionally	2.5t/ha

The Soilkee Renovator in Action

20/04/23

Looking Glass Soil Carbon trial site

OFFICIAL

TARCOMBE HEREFORDS

Changing grazing management practices \rightarrow soil carbon increase?

NB. No fence required around the current grazing startegy block this will be marked out for testing and monitroing purposes.

Multi nutrient fertiliser (P and K) at the rate of 260 kg/ha

What have we learnt so far?

Results

Bluetops: overcoming Murphy's law.

Looking Glass: Soilkee back 2nd year, native pasture future goal.

Tarcombe: willingness to switch to rotational grazing. MLA pasture ruler to measure growth.

Soil pit, articles on newsletter, soil health at regen ag course: better understanding of SOC

Challenges

- Covid → great delay → not enough time to see change in SOC
- Hoping to get extra funds to conclude the research
- If farmers wish to maintain higher SOC levels, changes in land management will need to be continued indefinitely.
- New approach to soil as a living being

Thank you!

For more information

Soil Carbon project on HCCC Landcare Website https://www.hccclandcare.net.au/soil-carbon

HCCC Soil Carbon Project Coordinator Vanessa@hccclandcare.net.au

AgriSci https://www.agrisci.com.au/

Online Resources: <u>Soil Carbon Snapshot</u> Case studies: <u>Soil for Life</u>

